Domain nucleation and hysteresis loop shape in piezoresponse force spectroscopy
نویسندگان
چکیده
منابع مشابه
Vector piezoresponse force microscopy.
A novel approach for nanoscale imaging and characterization of the orientation dependence of electromechanical properties-vector piezoresponse force microscopy (Vector PFM)-is described. The relationship between local electromechanical response, polarization, piezoelectric constants, and crystallographic orientation is analyzed in detail. The image formation mechanism in vector PFM is discussed...
متن کاملFerroelectric Domain Imaging Multiferroic Films Using Piezoresponse Force Microscopy
Recently, multiferroic materials with the magnetoelectric coupling of ferroelectric (or anti‐ ferroelectric) properties and ferromagnetic (or antiferromagnetic) properties have attracted a lot of attention.[1-4] Among them, BiFeO3(BFO) and YMnO3has been intensively studied. For such ABO3perovskite structured ferroelectric materials, they usually show antiferromag‐ netic order because the same B...
متن کاملElectrostatic-free piezoresponse force microscopy
Contact and non-contact based atomic force microscopy (AFM) approaches have been extensively utilized to explore various nanoscale surface properties. In most AFM-based measurements, a concurrent electrostatic effect between the AFM tip/cantilever and sample surface can occur. This electrostatic effect often hinders accurate measurements. Thus, it is very important to quantify as well as remove...
متن کاملA measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope
Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2006
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.2378526